Search results for "Optical frequency conversion"

showing 9 items of 9 documents

Frequency conversion of propagating surface plasmon polaritons by organic molecules

2008

We demonstrate frequency conversion of surface plasmon polaritons (SPP) by utilizing the coupling between organic dye molecules and SPP. Launching of SPPs into a plasmonic waveguide is done in two ways: by optically excited molecules and by quantum dots (QDs). QDs are demonstrated to overcome the major problem of bleaching occurring with molecules. The SPP propagates tens of micrometers and clear frequency conversion is observed in the SPP spectrum after passing an area of converter molecules. The use of molecules and QDs as elements of all-plasmonic devices has the potential for high integration and use of self-assembly in fabrication. Peer reviewed

CouplingFabricationMaterials sciencePhysics and Astronomy (miscellaneous)business.industryoptical frequency conversionsurface plasmonsSurface plasmontechnology industry and agriculturePhysics::Opticsequipment and suppliesoptical waveguidesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectdyesSurface plasmon polaritonintegrated opticsQuantum dotExcited statePolaritonMoleculeOptoelectronicsPhysics::Chemical Physicsbusinessoptical saturable absorptionpolaritonsApplied Physics Letters
researchProduct

Optical characterization of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals

2007

International audience; We report a complete optical characterization of YCa4O(BO3)3 and Nd:YCa4O(BO3)3 crystals. We studied the relative orientation between the dielectric and the crystallographic frames as a function of the wavelength and performed accurate phase-matching angles measurements for second harmonic generation, using a single crystal cut as a sphere. We also recorded polarized luminescence spectra of Nd:YCOB along the principal axes of the dielectric frame. For both crystals, we measured the gray-tracking and the thermo-optic properties as a function of temperature and wavelength using oriented slabs. Finally, we measured all their dielectric and electro-optic coefficients, as…

Neodymium additionsLuminescenceNonlinear opticsInorganic compoundsPhysics::OpticsCrystal growth02 engineering and technologyDielectricMonocrystals01 natural sciencesDoped materials010309 opticsInorganic ChemistryDielectric materialsColor centersOptics0103 physical sciencesOptical phase matchingAngular measurementElectrical and Electronic EngineeringPhysical and Theoretical ChemistrySpectroscopy[PHYS]Physics [physics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical propertiesbusiness.industryChemistryElectro-optical effectsThermo-optical effectsOrganic ChemistryOptical frequency conversionNonlinear opticsSecond-harmonic generationSecond harmonic generation021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthTemperature dependenceOptical materialsYttrium BoratesQuaternary compoundsCrystal growth0210 nano-technologybusinessLuminescenceSingle crystalPrincipal axis theorem
researchProduct

University of Palermo: Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material C…

2012

Content synopsis of the following paper: Matteo Cherchi, Alberto Taormina, Alessandro C. Busacca, Roberto L. Oliveri, Saverio Bivona, Alfonso C. Cino, Salvatore Stivala, Stefano Riva Sanseverino, and Claudio Leone, "Exploiting the Optical Quadratic Nonlinearity of Zinc-Blende Semiconductors for Guided-Wave Terahertz Generation: A Material Comparison", IEEE Journal of Quantum Electronics, Vol. 46, N. 3, March 2010

Optical waveguideOptical frequency conversionTerahertz generationSettore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct

The role of nonlinear optical absorption in narrowband difference-frequency terahertz-wave generation

2010

We present a general analysis of the influence of nonlinear optical absorption on terahertz generation via optical difference frequency generation, when reaching for the quantum conversion efficiency limit. By casting the equations governing the process in a suitably normalized form, including either two-photon- or three-photon-absorption terms, we have been able to plot universal charts for phase matched optical-to-terahertz conversion for different values of the nonlinear absorption coefficients. We apply our analysis to some experiments reported to date, in order to understand to what extent multiphoton absorption could have played a role and also to predict the maximum achievable conver…

Physicsbusiness.industryTerahertz radiationEnergy conversion efficiencyFOS: Physical sciencesPhysics::OpticsNonlinear opticsStatistical and Nonlinear PhysicsTwo-photon absorptionAtomic and Molecular Physics and OpticsPhoton countingOptical rectificationOpticsNarrowbandOptical frequency conversion Optical materials Optical parametric amplifiers Optical phase matching Optical propagation in nonlinear media Optical pulse generation Optical waveguides Frequency conversion Semiconductor materials Semiconductor waveguidesbusinessAbsorption (electromagnetic radiation)Optics (physics.optics)Physics - OpticsJournal of the Optical Society of America B
researchProduct

Studio della Nonlinearità Quadratica di Zincoblende per la Generazione di TeraHertz in Guida d'Onda: un Confronto di Cristalli Differenti

2009

DFG TeraHertz generation can approach the quantum efficiency limit with much lower peak powers than bulk experiments. We give details on the model and on the waveguide geometry.

Semiconductor materialsOptical frequency conversionTerahertz generation
researchProduct

Studio della nonlinearità quadratica di zincoblende per la generazione di TeraHertz in guida d'onda: un confronto di cristalli differenti

2009

DFG TeraHertz generation can approach the quantum efficiency limit with much lower peak powers than bulk experiments. We give details on the model and on the waveguide geometry.

Semiconductor materialsOptical frequency conversionTerahertz generation
researchProduct

Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: A material comparison

2010

We present a detailed analysis and comparison of dielectric waveguides made of CdTe, GaP, GaAs and InP for modal phase matched optical difference frequency generation (DFG) in the terahertz domain. From the form of the DFG equations, we derived the definition of a very general figure of merit (FOM). In turn, this FOM enabled us to compare different configurations, by taking into account linear and nonlinear susceptibility dispersion, terahertz absorption, and a rigorous evaluation of the waveguide modes properties. The most efficient waveguides found with this procedure are predicted to approach the quantum efficiency limit with input optical power in the order of kWs.

Semiconductor waveguidesTerahertz radiationPhase (waves)FOS: Physical sciencesPhysics::OpticsOptical powerFrequency conversionSettore ING-INF/01 - ElettronicaOptical pulse generationSemiconductor materialsDispersion (optics)Optical phase matchingFigure of meritOptical parametric amplifiersElectrical and Electronic EngineeringOptical propagation in nonlinear mediaPhysicsGuided wave testingbusiness.industryOptical frequency conversionCondensed Matter PhysicsAtomic and Molecular Physics and OpticsOptical waveguidesNonlinear systemOptical materialsTerahertz generationOptoelectronicsOptical frequency conversion Optical materials Optical parametric amplifiers Optical phase matching Optical propagation in nonlinear media Optical pulse generation Optical waveguides Frequency conversion Semiconductor materials Semiconductor waveguidesQuantum efficiencybusinessOptics (physics.optics)Physics - OpticsIEEE Journal of Quantum Electronics
researchProduct

Universal charts for optical difference frequency generation in the terahertz domain

2010

We present a universal and rigorous approach to study difference frequency generation in the terahertz domain, keeping the number of degrees of freedom to a minimum, through the definition of a suitable figure of merit. The proposed method relies on suitably normalized charts, that enable to predict the optical-to-terahertz conversion efficiency of any system based on wave propagation in quadratic nonlinear materials. The predictions of our approach are found to be in good agreement with the best experimental results reported to date, enabling also to estimate the d22 nonlinear coefficient of high quality GaSe.

Wave propagationComputer scienceTerahertz radiationDegrees of freedom (statistics)FOS: Physical sciencesFrequency conversionSettore ING-INF/01 - ElettronicaOptical pulse generationDomain (software engineering)Semiconductor materialsQuadratic equationQuality (physics)Submillimeter wave transmittersFigure of meritOptical parametric amplifiersElectrical and Electronic EngineeringOptical propagation in nonlinear mediaOptical frequency conversionSettore ING-INF/02 - Campi ElettromagneticiCondensed Matter PhysicsAtomic and Molecular Physics and Opticsoptical parametric amplifiersemiconductor materialNonlinear systemAlgorithmOptics (physics.optics)Physics - OpticsIEEE Journal of Quantum Electronics
researchProduct

Wavelength conversion and temporal compression of a pulse train using a dispersion oscillating fiber

2014

International audience; We demonstrate the generation of a picosecond pulse train taking advantage of the cross gain occurring in a dispersion oscillating fibre. The resulting frequency-converted signal is detuned by more than 20 nm from the pump and can be temporally compressed by a factor 2 compared to the input sinusoidal pump wave.

[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceOptical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryPhysics::OpticsCompression (physics)Signallaw.inventionOpticslawDispersion (optics)Pulse waveElectrical and Electronic EngineeringOptical frequency conversion; Detuned; pico-second pulseSinusoidal pumpbusinessUltrashort pulseBandwidth-limited pulse
researchProduct